728x90

среда, 30 июня 2010 г.

The Chemical Composition of Cells

Water is the major component of living cells, but the amount varies greatly. Thus, the pig embryo is 97% water; at birth a new-born pig is only 89% water. A lean 45-kg pig may contain 67% water but a very fat 135-kg animal only 40% water. Similar variations are encountered with other constitutents. The water content of a tissue is often determined by thoroughly drying a weighed sample of tissue at low temperature in vacuum and then weighing it a second time. The solid material can then be extracted with a solvent that will dissolve out the fatty compounds. These are referred to collectively as lipids. After evaporation of the solvent the lipid residue may be weighed. By this procedure a young leafy vegetable might be found to contain 2–5% lipid on a dry weight basis. Even very lean meats contain 10–30% lipid. The residue remaining after removal of the lipid consists predominately of three groups of compounds: proteins, nucleic acids, and carbohydrates. Most of the nitrogen present in tissues is found in the proteins and the protein content is sometimes estimated by determining the percentage of nitrogen and multiplying by 6.25. In a young green plant, 20–30% of the dry matter may be protein, while in very lean meat it may reach 50–70%.
A dried tissue sample may be burned at a high temperature to an ash, which commonly amounts to 3–10% and is higher in specialized tissues such as bone. It is a measure of the inorganic constituents of tissues. The carbohydrate content can be estimated by the difference of the sum of lipid, protein, and ash from 100%. It amounts to 50–60% in young green plants and only 2–10% in typical animal tissues. In exceptional cases the carbohydrate content of animal tissues may be higher; the glycogen content of oysters is 28%. The amount of nucleic acid in tissues varies from 0.1% in yeast and 0.5–1% in muscle and in bacteria to 15–40% in thymus gland and sperm cells. In these latter materials of high nucleic acid content it is clear that multiplication of % N by 6.25 is not a valid measure of protein content. For diploid cells of the body the DNA content per cell is nearly constant. Table 1-4 compares the composition of a bacterium, of a green plant, and of an active animal tissue (rat liver). Although the solid matter of cells consists principally of C, H, O, N, S, and P, many other chemical elements are also present. Among the cations, Na+, K+, Ca2+, and Mg2+ are found in relatively large amounts. Thus, the body of a 70 kg person contains 1050 g Ca (mostly in the bones), 245 g K, 105 g Na, and 35 g Mg. Iron (3 g), zinc (2.3 g), and rubidium (1.2 g) are the next most abundant. Of these iron and zinc are essential to life but rubidium is probably not. It is evidently taken up by the body together with potassium. The other metallic elements in the human body amount to less than 1 g each, but at least seven of them play essential roles. They include copper (100 mg), manganese (20 mg), and cobalt (~5 mg). Others, such as chromium (<6 onblur="try {parent.deselectBloggerImageGracefully();} catch(e) {}" href="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgvALacdidwP3KwCrgrKpGoaFSumV9DBTg2_Ug3l6JiSCyezVRcqQhZKKQuFG5rTAtMVWhMg4F6qVfkM7gY55AXuh6_8piCmXvb-GFGuCMQxOwOw3lnnLySMwWQ9IefASlU-GLg3l_gNrxZ/s1600/20.JPG">

Elements known to be essential to living things (after da Silva and Williams157). Essential elements are enclosed within shaded boxes. The 11 elements–C, H, O, N, S, P, Na, K, Mg, Ca, and Cl–make up 99.9% of the mass of a human being. An additional 13 are known to be essential for higher animals in trace amounts. Boron is essential to higher plants but apparently not to animals, microorganisms, or algae.

Комментариев нет:

Отправить комментарий