728x90

понедельник, 1 ноября 2010 г.

Twisted sheets.

X-ray diffraction studies have shown that β pleated sheets are usually not flat but are twisted. In a twisted sheet the individual polypeptide chains make a shallow left-handed helix. However, when successive carbonyl groups are viewed along the direction of the chain, a right-handed twist is seen. Such twisted β sheets are often found in the globular proteins. An example is the “nucleotide-binding” domain of a dehydrogenase enzyme. The twist of the sheet is seen clearly in this stereoscopic view. When such chains are associated into β sheets, whether parallel or antiparallel, and are viewed in a direction perpendicular to the chains and looking down the edge of the sheet, a left-handed “propeller” is seen. Such a propeller is visible in the drawing of carboxypeptidase.
The cause of the twist in β sheets appears to lie in noncovalent interactions between hydrogen atoms on the β-carbon atoms of side chains and the peptide backbone atoms. For side chains of most L- amino acids these interactions provide a small tendency towards the observed right-handed twist. Nonplanarity in the amide groups may also contribute. Interstrand interactions seem to be important.

A “ribbon” drawing of the 307- residue proteinhydrolyzing enzyme carboxypeptidase A. In this type of drawing wide ribbons are used to show β strands and helical turns while narrower ribbons are used for bends and loops of the peptide chains. The direction from the N terminus to C terminus is indicated by the arrowheads on the β strands. No individual atoms are shown and side chains are omitted. Courtesy of Jane Richardson.